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Abstract:  The Human Immunodeficiency Virus and Acquired Immune Deficiency Syndrome (HIV/AIDS) is posing a 

challenge as it has become drug resistant in some patients. Consequently, treatment failure and spread of drug 

resistant HIV/AIDS results. This compromises the effectiveness of the limited therapeutic options like the 

antiretroviral therapy (ART). It therefore becomes necessary to assess the future progress as well as predict the 

efficacy of ART treatment.  To this end, a Markov chain model for this assessment and prediction of treatment 

efficacy was formulated using the CD4 counts of a sample of 1,418 patients, receiving treatment every six (6) 

month at the HIV Counselling and Testing (HCT) unit of the general hospital Wukari, Taraba State. Taraba state is 

one of the states with high prevalence rate of HIV in North-eastern Nigeria. This methodology is considered 

appropriate as it can be applied in assessing and predicting treatment performance on a group of HIV patients or a 

cohort study. The progression of patients response to the therapy was assessed from one CD4 count state to another 

using a transition probability matrix. The efficacy of the therapy which is the maximum response of patients to 

treatment was evaluated using the long run (steady state) chances of patients in each CD4 count state and the mean 

recurrence time of each CD4 count state. The CD4 count states adopted in the study are; CD4 cell counts  500 

cells/L (state 1), CD4 cell counts in the range of 200 - 499 cell/L (state 2) and CD4 cell count < 200 cells/L 

(state 3) representing the Good, Moderate and Poor health states of patents respectively.  The model predicts that at 

the  long run, there is a 40, 44 and 16% chance that a patient will attain a Good, Moderate and Poor health state, 

respectively, with respective mean recurrence time of  1.24,  1.13 and 3.21 years. The study concludes that the 

difference in the chances of the health state of patients might be due to antiretroviral drug resistance among other 

factors. The authors recommend that these factors should be identified and considered when administering ART to 

ensure very high chances of the Good and Moderate health states. 
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Introduction 

The Human immunodeficiency syndrome (HIV) causes 

acquired immunodeficiency syndrome (AIDS) by destroying 

CD4 and T cells. Primarily, HIV infests and kills CD4+T 

lymphocytes, which function as regulators and amplifiers of 

the immune response. In the absence of effective antiretroviral 

therapy, the hall mark decrease in CD4+T lymphocytes during 

AIDS results in a weakened immune system, impairing the 

body’s ability to fight infections (Alimonti et al., 2003).  The 

Human Immunodeficiency Virus and Acquired Immune 

Deficiency Syndrome (HIV/AIDS) is considered to be the 

greatest development challenge in the world. According to 

UNAIDS (2004), 36.1 million people worldwide are 

estimated to be living with HIV/AIDS. It is estimated that 

70% (25.3 million) of all HIV/AIDS cases worldwide are in 

sub-Saharan Africa (UNAIDS, 2006). 

The first case of the HIV/AIDS epidemic was reported in 

Nigeria in 1986 (Kanki and Adeyi, 2006). In 2010, UNGASS 

estimated that 3.6% of the population in Nigeria is living with 

HIV/AIDS while approximately 220,000 people died of AIDS 

in 2009 in Nigeria UNAIDS, 2010). 

 Taraba state has one of the highest HIV/AIDS prevalence rate 

in North Eastern Nigeria. The prevalence rate of the disease in 

Taraba state ranged from 7.0 to 5.2% (Fidelis, 2007). Going 

by the 5.2% prevalence rate in the state as at 2008, it could be 

estimated that about 127,167 people were living with the virus 

in the state. As at 2007, only 2,541 infected persons in the 

state were known to be placed on the antiretroviral therapy 

(ART) programme in the state (Oruonye, 2011).  

The HIV infection progressively weakens the immune system 

as reflected by the reduction in the CD4 cell counts; thus 

making the patients vulnerable to various opportunistic 

infections (Grover et al., 2013). The antiretroviral drugs used 

in the Antiretroviral Therapy (ART) work by crippling the 

enzymes that are crucial in the replication of HIV. The CD4 

cell count has been an important factor in the clinical 

investigation of HIV patients as well as prognostic marker for 

assessing HIV progression. Apart from being a leading marker 

of disease progression, CD4 counts have been used as an 

indicator of ART initiation and disease progression, deciding 

when to commence therapy, staging the disease, determining 

treatment failure, and defining the risk for mother-to-child 

transmission. 

Two major classification systems currently are in use; the U.S 

Centre for Disease Control and Prevention (CDC) 

Classification System and the World Health Organization 

(WHO) Clinical Staging and Disease Classification System. 

The U.S. Centre for Disease Control and Prevention staging 

system used the CD4 count as a tool to stage HIV into 

categories A,B and C. This is based on whether the CD4 

count is ≥500 cells/mm3, between 200-499 cells/mm3 and 

<200 cells/mm3, respectively. It defines AIDS as all HIV –

positive patients with CD4 count <200 cells/mm3 or CD4% 

<14%. On the contrary, WHO staging is based on clinical 

findings and does not require CD4 count in order to 

accommodate for resource constrained setting where CD4 

count testing may not be available. This study adopts the CDC 

staging system. 

The Human Immunodeficiency Virus and Acquired Immune 

Deficiency Syndrome (HIV/AIDS) is posing a challenge as it 

has become drug resistant in some patients. Consequently, 

treatment failure and spread of drug resistant HIV results. 

This compromises the effectiveness of the limited therapeutic 

options like the antiretroviral therapy (ART) (WHO, 2018). It 

therefore becomes necessary to assess the progress of HIV 

patients response to ART treatment.  A strong advocate of this 

is Lee et al. (2014) who stated that forecasting the progression 

of HIV/AIDS spreads plays an important role in controlling 

disease transmission and alleviating health disparities. 

According to them, the projection of the future epidemic can 
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help optimize resource allocation and design efficient, 

economical, timely health policies targeting the high risk 

population and high prevalence areas.   

Over the years, a number of approaches and models have been 

used by different researchers to explain the dynamics of 

HIV/AIDS infection as well as the impact of the antiretroviral 

therapy. A preliminary study of the transition dynamics of the 

human immunodeficiency virus (HIV) is one of such works 

(Anderson et al., 1986) while a work on the modelling of 

medical treatment of HIV/AIDS infection using Markov 

decision processes is another (Andrew et al., 2005). A 

multistate Markov model based on CD4 count for HIV/AIDS 

patients on antiretroviral therapy which aimed at assessing the 

impact of the therapy is also a work in this vein (Grover et al., 

2013). The authors estimated the mean sojourn time and total 

length of stay before absorption, and also examined the effects 

of explanatory variables (that is, age, sex, mode of 

transmission) on the rates of transition using Cox’s 

proportional hazard model. They stated that the implication of 

their findings is that it might be prudent on the part of 

treatment and care providers to target early therapeutic 

interventions to slow the progression of a person living with 

HIV/AIDS (PLWHA) towards immune deterioration; thereby, 

contributing towards some gain in life years and somewhat 

increased quality of life due to the reduced chances of 

opportunistic infections. 

A  research on the determination of the life expectancy of 

HIV/AIDS patients in Anambra State using stationary and 

smoothed non-stationary Markov chain models is another 

research in this line of study that is worth mentioning (Nwosu, 

2015).  The impact of antiretroviral therapy on the epidemic 

of HIV (Williams et al., 2011) is another work in this regard.  

Another research work on Markov chain modelling analysis 

of HIV/AIDS progression: a race-based forecast in the United 

States (Lee et al., 2014) investigated the most vulnerable 

racial minority population (the African Americans) in the 

United States and the second least affected (the Caucasians) in 

order to predict the trends of the epidemic. The results reveal 

discrepancy in HIV infection, AIDS diagnosis and deaths due 

to HIV/AIDS among the African Americans and the 

Caucasians races. They stated that there is need for 

interventions focusing on HIV/AIDS prevention and 

management, optimum resource allocation and development 

of ANTIAIDS campaigns to reduce the infection rate. 

The effects of Highly Active Antiretroviral Therapy 

(HAART) of stavudine, lamivudine and nevirapine on the 

CD4 lymphocyte count of HIV-infected Africans (Erhabor et 

al., 2006) was studied. In this work, changes in CD4 counts in 

the HAART treated subjects and the untreated controls were 

assessed based on starting baseline CD4 count; 200 , 

350200  and 350 cells/


L. They were able to 

conclude that it is important to access the CD4 lymphocyte 

count of HIV infected patients before the initiation of 

HAART, which is used as a prognostic maker in predicting 

the initial response to HAART and in determining the optimal 

time to initiate therapy.  

 

Materials and Methods 

Data description and transformation
 

The data for this work is the CD4 counts of a sample of 1,418 

patients, receiving treatment every six (6) month at the HIV 

Counselling and Testing (HCT) unit of the general hospital 

Wukari, Taraba State, Nigeria. The CD4 cell counts of the 

1,418 HIV/AIDS patients was carefully organized to reflect 

the transition among the states defined has; less than 200 

cells/ L, between 200-499 cells/ L, and equal or greater 

than 500 cells/ L. These states were referred to as states I, 

II, and III representing the Good, Moderate and Poor health 

states of patients, respectively. This is captured in a table of 

transition counts as well as a transition probability matrix 

(Tables 1 and 2). 

Some mathematical detail s of the Markov Chain 

Model 

Markov Chain 

If a stochastic process }0,{ tX t is such that at  

any given time nt ,  when the current  state 
nt

X and 

all previous states 
1t

X ,
2t

X ,…,
1nt

X of the process 

are known, the probabilities of the future states 

)( njX
jt  depends only on the current state 

nt
X

and do not depend only on the earlier states  
1t

X ,

2t
X ,…,

1nt
X .  Then the process is  said to exhibit  

Markov dependence. The set of all possible values 

of t is called the parameter space and the set of al l  

possible values of 
nt

X is called the state space.  

A Markov chain is a stochastic process in which 

given a set of ordered time points

}...{ 21 nttt  ,  and for any possible sequence 

of states
1t

X ,
2t

X ,…,
1nt

X  

\(
11 


nn tt xXP ,...,

2211 tttt xXxX 

)\()
11 nnnnnn tttttt xXxXPxX 


  1 

(Ugwuowo, 2009) 

 

Transition probability matrix  

Every Markov chain has associated with it  

transition probabilities; the probabilities of moving 

from one state of the chain to another (Udom 

2010). Transition probabilities are usually based on 

frequency distribution of the number of transitions 

from one state to another in the system under 

consideration (using historic data). The frequencies 

are converted to  estimates of the probabilities by 

dividing each row by i ts total.   

Consider a finite Markov chain with n possible 

states, nxxx ,...,, 21  Let ijp  be the conditional  

probability that the process will be in state jx

given that it  was in state ix at the preceding 

observation time.  The transition probability matrix 

of the Markov Chain is defined to be the nxn  

matrix P with elements ijP .  These elements ijP are 

also called stationary probabilities .  

Thus  
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These elements ijP are also called stationary 

probabilities. They are defined as  

\( jXP n  ijn piX  )1
  2
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N-step transition probability matrix  

For any value of n  ( ...3,2n ),  the nth power 
np  

of the matrix P in above which specify the 

probability 
n

ijp  that the chain will move from any 

state ix to any state jx in n-step is called the n-step 

probability matrix. The matrix P in 3.4 is cal led 

the one-step transition probability matrix (Udom, 

2010). 

Steady state probabilities of a Markov Chain  

Consider a Markov Chain with r -states and the row 

vector  

)...( 21 r   

such that  

(i) 0i  (ii) 



1

1
i

i  (iii) 





n

n

ij
j plim  

where  ijp is as defined in 2.3.2 then 

)...( 21 r  is called the steady state 

vector of the Markov Chain. This means that as 

n ,  the probability that the chain will transit  

from state ix to a state jx is independent of the 

initial state ix .    can be obtained by solving the 

relat ion  

P   
 

Assessing the progress and predicting the efficacy 

of ART using Markov chain.  

 The three CD4 count states (I,  II and III) in 2.1 

above defines a three-state Markov chain for 

modeling the progress and predicting efficacy of 

ART. Initially the process may be in any of the 

three states and thereafter  t ransit  to the other state.  

The probability of this transition is what is known 

as the transition probability.  

 Let },{ TtX t 
 
be a Markov chain with index set 

T and state space S. Part icularly for this work,  

since },,{ IIIIIIS   then },{ TtX t   is a three-

state Markov chain as earlier mentioned. The most  

common of this is its first order which is defined as  

)\()...,,\( 111001 nnnnnn iXjXPiXiXiXjXP  

  

for all ),...,, 10 Siii n     3 

 

We assume in this work that the chance of the 

process entering a future CD4 count state only 

depend on the immediate past  CD4 count state. It  

does not depend on all the previous or past CD4 

count states.  This is  the well known Markov 

property and it holds for order one Markov chains.  

The probability of transit ions is est imated fro m 

data using relat ive frequencies. These frequencies 

are transition frequencies from each CD4 count 

state to another CD4 count state. The n -step 

transition probabilities (P n),  where n =1 s t ,  2nd ,  

3 r d ,…, n t h
 six month, is used for a six- month 

period assessment of the progress of the ART until  

steady state. Simply put, the n -step transition 

probability matrix (P n), ,  holds the chances of 

patients response to ART  over a six month interval  

(1 s t  ,  2nd  ,  3 r d  ,…, n t h
 six month)  as they move from 

one CD4 count state to the other. We envisage that  

this can be used to periodically and holistically 

assess the progress of patients response to ART.  

The steady state probabili ties for the first order 

Markov chain model are determined by solving the 

equations:  

    P321321 ,,,,     4 

 
1321  

       5 

Where  1   
s teady state probability of a good 

health state,  

  2  
steady state probabili ty of a 

moderate health state and  

           3 steady state probability of a poor 

health state  

 

The mean recurrence time for a good, moderate and 

poor health states are computed as the reciprocals 

of 1 ,  2  a nd 3  
respectively.  

As earlier mentioned, the efficacy of a treatment or 

therapy is a measure of maximum response of 

patients to treatment.  In the terminology of Markov 

chains, we interpret this as the long run response of 

patients to treatment. Hence in predicting the 

efficacy of the ART, we make use of the long run 

or steady state probabilit ies of patients health  

states. These enable us to forecast the long run 

(steady state) chances of patients in each CD4 

count state as well as their respective mean 

recurrence times.  

 

Results and Discussion 

Assessing the progress of patients response to ART 

As earlier mentioned, the CD4 cell counts of the 1,418 

HIV/AIDS patients was carefully organized to reflect the 

transition among the states I, II, and III representing the Good, 

Moderate and Poor health states of patients, respectively. This 

is captured in Table 1.  

 

Table 1: CD4 transition counts of the HIV/AIDS patients 

 I II III Total 

I 683 405 150 1238 

II 704 1001 231 1936 

III 133 569 378 1080 

Total    𝟒𝟐𝟓𝟒 

 

 

The initial transition probability matrix (
1P ) was obtained 

from Table 1 by dividing the elements of each row by their 

respective row totals. This is captured in the matrix below and 

represented in Fig. 1 by a transition diagram. This matrix 

captures the initial probabilities that a patient will transits 

from one health state to another in the first six month of the 

therapy. The diagonal elements of the matrix show that there 

are respectively 55, 52 and 35% chance that a patient will 

maintain the Good, Moderate and Poor health state. The off 

diagonal elements show the respective chances of a patient 

transiting between the health states.  This provides progress 

information on patients response to the ART in the first six 

month.  
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Fig. 1: Transition Diagram of patients between health states 

 

For the other six months interval appointments, the N-step 

transition probability matrix was used. These were obtained 

by finding powers of the initial transition probability matrix (
1P ). The result of these is displayed in Table 2 for 

2P , 
3P …,

11P  showing the chances of patients transition 

between the health states at the  2nd , 3rd ,…, 11th  six months 

interval appointments. 
11P  captures the steady state situation 

of patients response to the  therapy. The diagonal elements of 

each matrix, shows the chance that a patient will maintain the 

Good, Moderate and Poor health state, while the off diagonal 

elements show the respective chances of a patient transiting 

between the health states (Table 2).  

 

Table 2: N–step transition probability values  

Transition Probability   

  Actual State    

N t h  - Six 

Months 

Interval 

appointment 

Previous 

State 
I II III 

2nd  I 0.438615 0.413330 0.148055 

 II  0.403753 0.449030 0.147217 

 III 0.302774 0.497130 0.200096 

3rd  I 0.410778 0.435144 0.154078 

 II  0.404426 0.441759 0.153815 

 III 0.372698 0.461474 0.165828 

4 t h  I 0.404094 0.440493 0.155414 

 II  0.402963 0.441697 0.155340 

 III 0.394103 0.447846 0.158052 

5 t h  I 0.402515 0.441776 0.155709 

 II  0.402320 0.441990 0.155689 

 III 0.400001 0.443701 0.156298 

6 t h  I 0.402147 0.442079 0.155774 

 II  0.402115 0.442116 0.155769 

 III 0.401532 0.442563 0.155905 

7 t h  I 0.402062 0.442150 0.155788 

 II 0.402057 0.442156 0.155787 

 III 0.401915 0.442268 0.155817 

8 t h  I 0.402043 0.442166 0.155791 

 II  0.402042 0.442167 0.155791 

 III 0.402008 0.442194 0.155798 

9 t h  I 0.402038 0.442170 0.155792 

 II  0.402038 0.442170 0.155792 

 III 0.402030 0.442176 0.155793 

10 t h I 0.402037 0.442171 0.155792 

 II  0.402037 0.442171 0.155792 

 III 0.402036 0.442172 0.155792 

11 t h I 0.402037 0.442171 0.155792 

 II  0.402037 0.442171 0.155792 

 III 0.402037 0.442171 0.155792 

 

 

Figures 2 - 4 were obtained from table 2 to better explain the 

progress of patients response to the therapy. Fig. 2 shows the 

transition probabilities from states I, II, III to state I. Here 

after the second appointment (the second six month period), 

the probability that a patient’s health will remain in state I is 

0.438615 (43%) chance. While the chances that it will transit 

from states II and state III to state I are 0.403753 (40%) and 

0.302774 (30%), respectively. This shows a decreased chance 

of the patients health improving from the Moderate and Poor 

health states to the Good health in the second appointment. 

These chances continue to decrease over the rest of the 

appointments and become constant at the 11th appointment. 

The steady state value is 0.402, explaining a 40% chance that 

a patient will attain the Good health state at the long run.  

 

 
Fig. 2: Transition probabilities from states I, II, III to state I  

 

 
Fig. 3: Transition probabilities from states I, II, III to state II  

 

Figure 3 shows the transition probabilities from states I, II, III 

to state II. In this case, the probability that a patient will 

remain in the Moderate health state is 0.449030 (45%) after 

the second appointment (the second six month period). The 

chance of transition from the Good and Poor health states to 

the Moderate health state are respectively 0.413330 and 

0.497130. These chances continued to fluctuate over the rest 

of the appointments and became steady during the 11th 

appointment at a value of 0.442171 (44%). This shows there 

is a 44% chance that a patient will attain the Moderate health 

state at the long run.  

Figure 4 shows the transition probabilities from states I, II, III 

to state III. In this case, the probability that a patient will 

remain in the Poor health state is 0.200096 (20%) after the 

second appointment (the second six month period). The 
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chance of transition from the Good and Moderate health states 

to the Poor health state are respectively 0.148055 and 

0.147217. These chances also continued to fluctuate over the 

rest of the appointments and became steady during the 11th 

appointment at a value of 0.155792 (16%). This shows there 

is a 16% chance that a patient will attain the Poor health state 

at the long run.  

 

 
Fig. 4: Transition probabilities from states I, II, III to state III  

 

Predicting the efficacy of the ART 

The steady state or long run probabilities of patients being in 

the respective health state were obtained from the chances of 

these respective states on Table 2 during the 11th appointment. 

This is displayed in the matrix (
11P ) below.  

 



















155792.0442171.0402037.0

155792.0442171.0402037.0

155792.0442171.0402037.0
11P  

 

As earlier mentioned, this shows a 40, 44 and 16% chance that 

a patient will attain the Good, Moderate and Poor health 

states, respectively. The mean recurrence time (years) for each 

state was obtained by finding the reciprocal of their respective 

steady state probability. These were computed as 1.24, 1.13 

and 3.21 years, respectively. 

As earlier mentioned, the efficacy of a treatment or 

therapy is a measure of maximum response of 

patients to treatment. In this work this is  

interpreted as the long run response of patients to  

treatment. Therefore, in predicting the efficacy of 

the ART, we make use of the long run or steady 

state probabilities of patients health states. These 

enable us to forecast the long run (steady state)  

chances of patients being in each health state. Their  

respective mean recurrence time is also used to 

compliment this prediction. In this vein we state 

that the overal l efficacy of the ART is such that  a 

patient will attain a Good health state 40% of the 

time,  a Moderate health state 44% of the time and a 

Poor health state 16% of the time, with mean 

recurrence times of 1.24, 1.13 and 3.21 years,  

respectively.  

 

Conclusion and Recommendation 

The following conclusions were drawn from the study: 

(i) The health of the patients was assessed at each 

appointment to be transiting between any pair of the 

Good, Moderate and Poor health states at defined 

chances. 

(ii)  The overall efficacy of the ART is such that  

a patient wil l attain a Good health state 40% 

of the time, a Moderate health state 44% of 

the time and a Poor health state 16% of the 

time.  

(iii)  The mean recurrence times of the Good, 

Moderate and Poor health states are 

respectively 1.24, 1.13 and 3.21 years,  

respectively.  

The paper, thus recommends that; 

(a) The Markov chain model should be used in assessing 

the progress and predicting the efficacy of ART.  

(b) The methodology of this work should be applied to a 

cohort study to further validate the results. 
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